Advertisements
Advertisements
Question
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Solution
RHS = `1 + 2 tan θ/cos θ + 2 tan^2 θ`
= `1 + 2 sin θ/cos^2θ + 2 sin^2 θ/cos^2 θ`
= `(cos^2 θ + 2sin θ + 2 sin^2 θ)/(cos^2θ)`
= `(1 - sin^2θ + 2 sin θ + 2 sin^2θ )/(1 - sin^2θ)`
= `(1 + sin^2θ + 2 sin θ)/(1 - sin^2θ)`
= `(1 + sin θ)^2/( 1 + sin θ)(1 - sin θ)`
= `(1 + sin θ)/(1 - sin θ)`
= LHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identity.
`cos^2 A + 1/(1 + cot^2 A) = 1`
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
` tan^2 theta - 1/( cos^2 theta )=-1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove that sin θ sin( 90° - θ) - cos θ cos( 90° - θ) = 0
If tan α + cot α = 2, then tan20α + cot20α = ______.