Advertisements
Advertisements
Question
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Solution
We have `(cosec theta + cot theta ) = m ............(i)`
Again ,`( cosec theta - cot theta )=n ............(ii)`
๐๐๐ค, ๐๐ข๐๐ก๐๐๐๐ฆ๐๐๐ (๐)๐๐๐ (๐๐), ๐ค๐ ๐๐๐ก:
`(cosec theta + cot theta ) xx ( cosec theta - cot theta ) = mn`
= >`cosec ^2 theta - cot^2 theta =mn`
= >1= mn `[โต cosec ^2 theta - cot^2 theta =1]`
∴ mn =1
APPEARS IN
RELATED QUESTIONS
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities:
`(1 - cos^2 A) cosec^2 A = 1`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
`cosA/(1 - sinA) = sec A + tan A`
Prove the following identities:
`cosA/(1 + sinA) + tanA = secA`
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
From the figure find the value of sinθ.
sec4 A − sec2 A is equal to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If cosθ = `5/13`, then find sinθ.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
sin2θ + sin2(90 – θ) = ?
Prove that sin4A – cos4A = 1 – 2cos2A
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.