Advertisements
Advertisements
Question
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
Solution
We have x = a `cos^3 theta `
= > `x/a = cos^3 theta ........(i)`
Again , `y = b sin^3 theta`
= > `y/b = sin^3 theta .....(ii)`
Now , LHS = `(x/a)^(2/3) + (y/b)^(2/3)`
= `( cos^3 theta )^(2/3) + (sin^3 theta )^ (2/3 )` [ from (i) and (ii)]
=` cos^2 theta + sin^2 theta `
=1
๐ป๐๐๐๐, ๐ฟ๐ป๐ = ๐ ๐ป๐
APPEARS IN
RELATED QUESTIONS
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`cos^2 theta /((1 tan theta))+ sin ^3 theta/((sin theta - cos theta))=(1+sin theta cos theta)`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If a cos θ – b sin θ = c, then prove that (a sin θ + b cos θ) = `± sqrt("a"^2 + "b"^2 -"c"^2)`
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
If 2sin2θ – cos2θ = 2, then find the value of θ.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`