English

Prove that secAtanA+cotA = sin A - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `sec"A"/(tan "A" + cot "A")` = sin A

Sum

Solution

L.H.S = `sec"A"/(tan "A" + cot "A")`

= `sec"A"/((sin"A")/(cos"A") + (cos"A")/(sin"A"))`

= `sec"A"/((sin^2"A" + cos^2"A")/(cos"A" sin"A"))`

= `sec"A"/(1/(cos"A" sin"A"))`   ......[∵ sin2A + cos2A = 1]

= sec A cos A sin A

= `1/cos"A" xx cos "A" sin "A"`

= sin A

= R.H.S.

∴ `sec"A"/(tan "A" + cot "A")` = sin A

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

RELATED QUESTIONS

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


Prove the following trigonometric identity:

`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`


Prove the following identities:

`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


If sinθ = `11/61`, find the values of cosθ using trigonometric identity.


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


If tan α + cot α = 2, then tan20α + cot20α = ______.


Prove the following:

`1 + (cot^2 alpha)/(1 + "cosec"  alpha)` = cosec α


sin(45° + θ) – cos(45° – θ) is equal to ______.


Eliminate θ if x = r cosθ and y = r sinθ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×