Advertisements
Advertisements
Question
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Solution
L.H.S = `sec"A"/(tan "A" + cot "A")`
= `sec"A"/((sin"A")/(cos"A") + (cos"A")/(sin"A"))`
= `sec"A"/((sin^2"A" + cos^2"A")/(cos"A" sin"A"))`
= `sec"A"/(1/(cos"A" sin"A"))` ......[∵ sin2A + cos2A = 1]
= sec A cos A sin A
= `1/cos"A" xx cos "A" sin "A"`
= sin A
= R.H.S.
∴ `sec"A"/(tan "A" + cot "A")` = sin A
RELATED QUESTIONS
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following identities:
`tan A - cot A = (1 - 2cos^2A)/(sin A cos A)`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
If `cos theta/(1 + sin theta) = 1/"a"`, then prove that `("a"^2 - 1)/("a"^2 + 1)` = sin θ
tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= `square (1 - (sin^2theta)/(tan^2theta))`
= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`
= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`
= `tan^2theta (1 - square)`
= `tan^2theta xx square` .....[1 – cos2θ = sin2θ]
= R.H.S
If tan α + cot α = 2, then tan20α + cot20α = ______.
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
sin(45° + θ) – cos(45° – θ) is equal to ______.
Eliminate θ if x = r cosθ and y = r sinθ.