Advertisements
Advertisements
Question
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Solution
L.H.S = `(sintheta + "cosec" theta)/sin theta`
= `sintheta/sintheta + ("cosec"theta)/sintheta`
= 1 + cosec θ × cosec θ ......`[∵ "cosec" theta = 1/sin theta]`
= 1 + cosec2θ
= 1 + 1 + cot2θ .......[∵ 1 + cot2θ = cosec2θ]
= 2 + cot2θ
= R.H.S
∴ `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
APPEARS IN
RELATED QUESTIONS
Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ