English

Prove that sinθ+cosec θsinθ = 2 + cot2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ

Sum

Solution

L.H.S = `(sintheta + "cosec"  theta)/sin theta`

= `sintheta/sintheta + ("cosec"theta)/sintheta`

= 1 + cosec θ × cosec θ   ......`[∵ "cosec"  theta = 1/sin theta]`

= 1 + cosec2θ

= 1 + 1 + cot2θ      .......[∵ 1 + cot2θ = cosec2θ]

= 2 + cot2θ

= R.H.S

∴ `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.3 (B)

RELATED QUESTIONS

Show that `sqrt((1+cosA)/(1-cosA)) = cosec A + cot A`


Prove the following trigonometric identities.

`cosec theta sqrt(1 - cos^2 theta) = 1`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Prove the following identity : 

`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×