Advertisements
Advertisements
Question
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Solution
L.H.S = sec2θ + cosec2θ
= `1/(cos^2theta) + 1/(sin^2theta)`
= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`
= `1/(cos^2theta*sin^2theta)` ......[∵ sin2θ + cos2θ = 1]
= `1/(cos^2theta) xx 1/(sin^2theta)`
= sec2θ × cosec2θ
= R.H.S
∴ sec2θ + cosec2θ = sec2θ × cosec2θ
APPEARS IN
RELATED QUESTIONS
Prove that `cosA/(1+sinA) + tan A = secA`
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`
`(sec^2 theta-1) cot ^2 theta=1`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
What is the value of 9cot2 θ − 9cosec2 θ?
What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]
\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Without using trigonometric identity , show that :
`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`