English

Prove that sec2θ + cosec2θ = sec2θ × cosec2θ - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that sec2θ + cosec2θ = sec2θ × cosec2θ

Sum

Solution

L.H.S = sec2θ + cosec2θ

= `1/(cos^2theta) + 1/(sin^2theta)`

= `(sin^2theta + cos^2theta)/(cos^2theta*sin^2theta)`

= `1/(cos^2theta*sin^2theta)`   ......[∵ sin2θ + cos2θ = 1]

= `1/(cos^2theta) xx 1/(sin^2theta)`

= sec2θ × cosec2θ

= R.H.S

∴ sec2θ + cosec2θ = sec2θ × cosec2θ

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Q.2 (B)

RELATED QUESTIONS

Prove that `cosA/(1+sinA) + tan A =  secA`


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`(sinA - cosA + 1)/(sinA + cosA - 1) = cosA/(1 - sinA)`


`(sec^2 theta-1) cot ^2 theta=1`


`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`


If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50°   cosec 40 °`


Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`


What is the value of 9cot2 θ − 9cosec2 θ? 


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


\[\frac{1 + \tan^2 A}{1 + \cot^2 A}\]is equal to


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Without using trigonometric identity , show that :

`tan10^circ tan20^circ tan30^circ tan70^circ tan80^circ = 1/sqrt(3)`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×