English

Prove that: tanθsecθθθθθtanθsecθ – 1=tanθ+secθ+1tanθ+secθ-1 - Geometry Mathematics 2

Advertisements
Advertisements

Question

Prove that:

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

Sum

Solution 1

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

RHS = `(tanθ + secθ + 1)/(tanθ + secθ - 1)`

`"RHS" = (tanθ + secθ + 1)/((tanθ + secθ) - 1) × (tanθ + secθ + 1)/((tanθ + secθ) + 1)          ...("On rationalising the denominator")`

`"RHS" = ((tanθ + secθ + 1)^2)/((tanθ + secθ)^2 - 1)`

`"RHS" = (tan^2θ + sec^2θ + 1 + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + sec^2θ - 1) ...{((a + b + c)^2 = a^2 + b^2 + c^2 + 2ab + 2ac + 2bc),((a + b)^2 = a^2 + 2ab + b^2):}`

`"RHS" = ((1 + tan^2θ) + sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + (sec^2θ - 1))`

`"RHS" = (sec^2θ + sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(tan^2θ + 2tanθ.secθ + tan^2θ)`

`"RHS" = (2sec^2θ + 2tanθsecθ + 2tanθ + 2secθ)/(2tan^2θ + 2tanθ.secθ)`

`"RHS" = [2secθ (tanθ + secθ) + 2(tanθ + secθ)]/[2tanθ(tanθ + secθ)]`

`"RHS" = [(2secθ + 2)(cancel(tanθ + secθ))]/[2tanθ(cancel(tanθ + secθ))]`

`"RHS" = [cancel2(secθ + 1)]/[cancel2(tanθ)]`

`"RHS" = (secθ + 1)/(tanθ)`

`"RHS" = (secθ + 1)/(tanθ) × (secθ - 1)/(secθ - 1)`

`"RHS" = (sec^2θ - 1)/(tanθ(secθ - 1))        ...[(a - b)(a + b) = a^2 - b^2]`

`"RHS" = (tan^cancel2θ)/(canceltanθ(secθ - 1))`

`"RHS" = tanθ/(secθ - 1)`

LHS = `"tanθ"/("secθ"  –  1)`

LHS = RHS

Hence proved.

shaalaa.com

Solution 2

`"tanθ"/("secθ"  –  1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

LHS = `"tanθ"/("secθ"  – 1)`

`"LHS" = "tanθ"/("secθ"  – 1) × ("secθ" + 1)/("secθ"+ 1)   ...("On rationalising the denominator")`  

`"LHS" = ("tanθ"("secθ" + 1))/("sec"^2θ" - 1)     ...[(a + b)(a - b) = a^2 - b^2]`

`"LHS" = ("tanθ"("secθ" + 1))/("tan"^2θ")          ...{(∵ 1 + tan^2θ = sec^2θ),(∵ sec^2θ - 1 = tan^2θ):}`

`"LHS" = ("secθ" + 1)/"tanθ"`

∴ `"tanθ"/("secθ"  –  1) = ("secθ" + 1)/"tanθ"`

∴ By theorem on equal ratios,

`"tanθ"/("secθ"  –  1) = ("secθ" + 1)/"tanθ" = (tanθ + (secθ + 1))/((tanθ) + secθ - 1)`

`"LHS" = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

`"RHS" = (tanθ + secθ + 1)/(tanθ + secθ - 1)`

LHS = RHS

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 6: Trigonometry - Practice Set 6.1 [Page 131]

RELATED QUESTIONS

Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


If cos θ + cos2 θ = 1, prove that sin12 θ + 3 sin10 θ + 3 sin8 θ + sin6 θ + 2 sin4 θ + 2 sin2 θ − 2 = 1


Prove the following identities:

`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`


If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m


Prove the following identities:

`cosA/(1 + sinA) + tanA = secA`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


Prove that:

`cosA/(1 + sinA) = secA - tanA`


`sec theta (1- sin theta )( sec theta + tan theta )=1`


`(sec theta + tan theta )/( sec theta - tan theta ) = ( sec theta + tan theta )^2 = 1+2 tan^2 theta + 25 sec theta tan theta `


`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`


Write the value of `4 tan^2 theta  - 4/ cos^2 theta`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(tanθ + 1/cosθ)^2 + (tanθ - 1/cosθ)^2 = 2((1 + sin^2θ)/(1 - sin^2θ))`


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


sec θ when expressed in term of cot θ, is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×