English

If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m - Mathematics

Advertisements
Advertisements

Question

If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m

Sum

Solution

Given:

sin A + cos A = m and sec A + cosec A = n

Consider L.H.S = n (m2 – 1) 

= `(secA + cosecA)[(sinA + cosA)^2 - 1]`

= `(1/cosA + 1/sinA)[sin^2A + cos^2A + 2sinAcosA - 1]`

= `((cosA + sinA)/(sinAcosA))(1 + 2sinAcosA - 1)`

= `((cosA + sinA))/(sinAcosA)(2sinAcosA)`

= 2(sin A + cos A)

= 2 m = R.H.S

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (B) [Page 327]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (B) | Q 5 | Page 327
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×