Advertisements
Advertisements
Question
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
Solution
Given:
sin A + cos A = m and sec A + cosec A = n
Consider L.H.S = n (m2 – 1)
= `(secA + cosecA)[(sinA + cosA)^2 - 1]`
= `(1/cosA + 1/sinA)[sin^2A + cos^2A + 2sinAcosA - 1]`
= `((cosA + sinA)/(sinAcosA))(1 + 2sinAcosA - 1)`
= `((cosA + sinA))/(sinAcosA)(2sinAcosA)`
= 2(sin A + cos A)
= 2 m = R.H.S
APPEARS IN
RELATED QUESTIONS
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`cosec theta (1+costheta)(cosectheta - cot theta )=1`
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1