Advertisements
Advertisements
Question
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Solution
Given (1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Let us assume that
(1 + cos α)(1 + cos β)(1 + cos γ) = (1 -cos α)(1 - cos β)(1 - cos γ) = L
Weknow that `sin^2 theta + cos^2 theta = 1`
Then, we have
L X L = (1 + cos α)(1 +_ cos β)(1 + cos γ) x (1 - cos α)(1 - cos β)(1 - cos γ)
=> :^2 = {(1 - cos α)(1 - cos α)}{(1 + cos β)(1 - cos β)}{(1 + cos γ)(1 - cos γ)}
`=> L^2 = (1 - cos^2 α )(1 - cos^2 β)(1 - cos^2 γ)`
`=> L^2 = sin^2 α sin^2 β sin^2 γ`
`=> L = +- sin α sin β sin γ`
Therefore, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = +- sin α sin β sin γ`
Taking the expression with the positive sign, we have
`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = sin α sin β sin γ`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`
Prove the following trigonometric identities.
`cos A/(1 - tan A) + sin A/(1 - cot A) = sin A + cos A`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`cosecA + cotA = 1/(cosecA - cotA)`
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A
`cot^2 theta - 1/(sin^2 theta ) = -1`a
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Prove the following identities.
`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`