English

Given That: (1 + Cos α) (1 + Cos β) (1 + Cos γ) = (1 − Cos α) (1 − Cos α) (1 − Cos β) (1 − Cos γ) Show that One of the Values of Each Member of this Equality is Sin α Sin β Sin γ - Mathematics

Advertisements
Advertisements

Question

Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ

Solution

Given (1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Let us assume that

(1 + cos α)(1 + cos β)(1 + cos γ) = (1 -cos α)(1 - cos β)(1 - cos γ) = L

Weknow that `sin^2 theta + cos^2 theta = 1`

Then, we have

L X L = (1 + cos α)(1 +_ cos β)(1 + cos γ) x (1 - cos α)(1 - cos β)(1 - cos γ)

=> :^2 = {(1 - cos α)(1 - cos α)}{(1 + cos β)(1 - cos β)}{(1 + cos γ)(1 - cos γ)}

`=> L^2 = (1 - cos^2 α )(1 - cos^2 β)(1 - cos^2 γ)`

`=> L^2 = sin^2 α sin^2 β sin^2 γ`

`=> L = +- sin α sin β sin γ`

Therefore, we have

`(1 + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = +- sin α sin β sin γ`

Taking the expression with the positive sign, we have

`(1  + cos α)(1 + cos β)(1 + cos γ) = (1 - cos α)(1 - cos β)(1 - cos γ) = sin α  sin β  sin γ`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 85 | Page 47

RELATED QUESTIONS

Prove the following trigonometric identities

`cos theta/(1 - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


Prove the following trigonometric identities.

`cos A/(1 - tan A) + sin A/(1 - cot A)  = sin A + cos A`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following identities:

`cosecA + cotA = 1/(cosecA - cotA)`


Prove the following identities:

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`


Prove that:

(sin A + cos A) (sec A + cosec A) = 2 + sec A cosec A


`cot^2 theta - 1/(sin^2 theta ) = -1`a


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`


Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`


Prove the following identities.

`(sin "A" - sin "B")/(cos "A" + cos "B") + (cos "A" - cos "B")/(sin "A" + sin "B")`


If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×