Advertisements
Advertisements
Question
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Solution
We have,
`cot ^2 -1/ sin^2 θ= cot ^2 θ-(1/ sinθ)^2`
= `cot ^2 θ-(cosec θ)^2`
= `cot^2 θ-cosec^2 θ`
We know that, `cot^2 θ-cosec^2 θ`
Therefore,
\[\cot^2 \theta - \frac{1}{\sin^2 \theta} = - 1\]
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)