English

Write the Value of Cot 2 θ − 1 Sin 2 θ - Mathematics

Advertisements
Advertisements

Question

Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 

Sum

Solution

We have, 

`cot ^2 -1/ sin^2 θ= cot ^2 θ-(1/ sinθ)^2` 

                = `cot ^2 θ-(cosec θ)^2` 

               = `cot^2 θ-cosec^2 θ` 

We know that, `cot^2 θ-cosec^2 θ` 

Therefore,

\[\cot^2 \theta - \frac{1}{\sin^2 \theta} = - 1\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 9 | Page 55

RELATED QUESTIONS

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following trigonometric identities.

`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Prove that:

`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


Show that none of the following is an identity: 

`sin^2 theta + sin  theta =2`


Write the value of `(1 + tan^2 theta ) cos^2 theta`. 


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


If sin θ + cos θ = `sqrt(3)`, then prove that tan θ + cot θ = 1


Prove that cot2θ × sec2θ = cot2θ + 1


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×