Advertisements
Advertisements
Question
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Solution
LHS = `cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°)`
= `cos^2 26° + cos (90° - 26°) sin 26° + (tan 36°)/(cot (90° - 54°)`
= `cos^2 26° + sin 26°. sin 26° + (tan 36°)/(tan 36°)`
= cos2 26° + sin2 26 + 1 ....( cos2 θ + sin2 θ = 1)
= 1 + 1 = 2
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
If sin2 θ cos2 θ (1 + tan2 θ) (1 + cot2 θ) = λ, then find the value of λ.
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.