Advertisements
Advertisements
Question
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Solution
LHS = cot θ - tan θ
= `cos θ/sin θ - sin θ/cos θ`
= `(cos^2 θ - sin^2 θ)/(sin θ. cos θ)`
= `(cos^2 θ - (1 - cos^2 θ))/(sin θ. cos θ)`
= `(2cos^2 θ - 1)/(sin θ. cos θ)`
= RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
If sin A + cos A = m and sec A + cosec A = n, show that : n (m2 – 1) = 2 m
`sec theta (1- sin theta )( sec theta + tan theta )=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If 1 – cos2θ = `1/4`, then θ = ?