Advertisements
Advertisements
Question
prove that `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A)) = 2cosec^2(90^circ - A)`
Solution
LHS = `1/(1 + cos(90^circ - A)) + 1/(1 - cos(90^circ - A))`
= `1/(1 + sinA) + 1/(1 - sinA)`
= `(1 - sinA + 1 + sinA)/((1 + sinA)(1 - sinA))`
= `2/(1 - sin^2A)`
= `2/cos^2A`
= `2sec^2A = 2cosec^2(90^circ - A)`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove that `sqrt((1 + sin A)/(1 - sin A))` = sec A + tan A.
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1