Advertisements
Advertisements
Question
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Options
2a
3a
0
2ab
Solution
2a
Explanation;
Hint:
b(a2 – 1) = (sec θ + cosec θ) [(sin θ + cos θ)2 – 1]
= `1/ cos theta + 1/sin theta` [sin2 θ + cos2 θ + 2 sin θ cos θ – 1]
= `[(sin theta + cos theta)/(sin theta cos theta)]` [1 + 2 sin θ cos θ – 1]
= `[(sin theta + cos theta)/(sin theta cos theta)] xx 2 sin theta cos theta`
= 2(sin θ + cos θ)
= 2a
APPEARS IN
RELATED QUESTIONS
`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
Prove that:
(tan A + cot A) (cosec A – sin A) (sec A – cos A) = 1
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Verify that the points A(–2, 2), B(2, 2) and C(2, 7) are the vertices of a right-angled triangle.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1