Advertisements
Advertisements
Question
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Solution
`1/(tanA + cotA) = sinAcosA`
`1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA) = 1/((sin^2A + cos^2A)/(sinAcosA))`
= `1/(1/(sinAcosA)` (`Q sin^2A + cos^2A = 1`)
= sinA cosA
APPEARS IN
RELATED QUESTIONS
Prove that:
`cosA/(1 + sinA) = secA - tanA`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove that `(sec θ - 1)/(sec θ + 1) = ((sin θ)/(1 + cos θ ))^2`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Choose the correct alternative:
tan (90 – θ) = ?
Prove that
`(cot "A" + "cosec A" - 1)/(cot"A" - "cosec A" + 1) = (1 + cos "A")/"sin A"`
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.