Advertisements
Advertisements
प्रश्न
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
उत्तर
`1/(tanA + cotA) = sinAcosA`
`1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA) = 1/((sin^2A + cos^2A)/(sinAcosA))`
= `1/(1/(sinAcosA)` (`Q sin^2A + cos^2A = 1`)
= sinA cosA
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identity.
`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following identities:
`1 - sin^2A/(1 + cosA) = cosA`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If tan θ = `7/24`, then to find value of cos θ complete the activity given below.
Activity:
sec2θ = 1 + `square` ......[Fundamental tri. identity]
sec2θ = 1 + `square^2`
sec2θ = 1 + `square/576`
sec2θ = `square/576`
sec θ = `square`
cos θ = `square` .......`[cos theta = 1/sectheta]`
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ