Advertisements
Advertisements
प्रश्न
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
उत्तर
`1/(tanA + cotA) = sinAcosA`
`1/(tanA + cotA)`
= `1/(sinA/cosA + cosA/sinA) = 1/((sin^2A + cos^2A)/(sinAcosA))`
= `1/(1/(sinAcosA)` (`Q sin^2A + cos^2A = 1`)
= sinA cosA
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
sin2θ + sin2(90 – θ) = ?
Given that sin θ = `a/b`, then cos θ is equal to ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?