हिंदी

Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)? - Mathematics

Advertisements
Advertisements

प्रश्न

Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?

विकल्प

  • cos2 θ – sin2 θ = 1

  • cosec2 θ – sec2 θ = 1

  • sec2 θ – tan2 θ = 1

  • cot2 θ – tan2 θ = 1

MCQ

उत्तर

sec2 θ – tan2 θ = 1

Explanation:

∵ sec2 θ = 1 + tan2 θ

∴ sec2 θ – tan2 θ = 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Standard - Delhi Set 2

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`sqrt((1+sinA)/(1-sinA)) = secA + tanA`


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`


Prove that:

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn 


Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`


If tan θ = 2, where θ is an acute angle, find the value of cos θ. 


Prove that ( 1 + tan A)2 + (1 - tan A)2 = 2 sec2A


If x = a sec θ + b tan θ and y = a tan θ + b sec θ prove that x2 - y2 = a2 - b2.


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If cot θ = `40/9`, find the values of cosec θ and sinθ,

We have, 1 + cot2θ = cosec2θ

1 + `square` = cosec2θ

1 + `square` = cosec2θ

`(square + square)/square` = cosec2θ

`square/square` = cosec2θ  ......[Taking root on the both side]

cosec θ = `41/9`

and sin θ = `1/("cosec"  θ)`

sin θ = `1/square`

∴ sin θ =  `9/41`

The value is cosec θ = `41/9`, and sin θ = `9/41`


Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×