हिंदी

Prove the Following Trigonometric Identities. Sqrt((1 - Cos A)/(1 + Cos A)) = Cosec a - Cot a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`

उत्तर

We need to prove  `sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`

Here, rationaliaing the L.H.S, we get

`sqrt((1 - cos A)/(1 +  cos A)) = sqrt((1 - cos A)/(1 +cos A)) xx sqrt((1 - cos A)/(1 - cos A))`

`= sqrt((1 - cos A)^2/(1 - cos^2 A))`

Further using the property, `sin^2 theta + cos^2 theta = 1` we get

So,

`sqrt((1 - cos A)^2/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A`

`= (1 - cos A)/sin A`

`= 1/sin A - cos A/sin A`

= cosec A - cot A

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 38 | पृष्ठ ४४

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`


Prove the following identities:

`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


` tan^2 theta - 1/( cos^2 theta )=-1`


If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.


Write the value of `( 1- sin ^2 theta  ) sec^2 theta.`


Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


Prove the following identity : 

`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq


For ΔABC , prove that : 

`tan ((B + C)/2) = cot "A/2`


Find A if tan 2A = cot (A-24°).


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×