Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
उत्तर
We need to prove `sqrt((1 - cos A)/(1 + cos A)) = cosec A - cot A`
Here, rationaliaing the L.H.S, we get
`sqrt((1 - cos A)/(1 + cos A)) = sqrt((1 - cos A)/(1 +cos A)) xx sqrt((1 - cos A)/(1 - cos A))`
`= sqrt((1 - cos A)^2/(1 - cos^2 A))`
Further using the property, `sin^2 theta + cos^2 theta = 1` we get
So,
`sqrt((1 - cos A)^2/(1 - cos^2 A)) = sqrt((1 - cos A)^2/sin^2 A`
`= (1 - cos A)/sin A`
`= 1/sin A - cos A/sin A`
= cosec A - cot A
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
if `a cos^3 theta + 3a cos theta sin^2 theta = m, a sin^3 theta + 3 a cos^2 theta sin theta = n`Prove that `(m + n)^(2/3) + (m - n)^(2/3)`
Prove the following identities:
`cot^2A/(cosecA + 1)^2 = (1 - sinA)/(1 + sinA)`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
` tan^2 theta - 1/( cos^2 theta )=-1`
If `( cosec theta + cot theta ) =m and ( cosec theta - cot theta ) = n, ` show that mn = 1.
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
If 3 `cot theta = 4 , "write the value of" ((2 cos theta - sin theta))/(( 4 cos theta - sin theta))`
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
Prove the following identity :
`sqrt((secq - 1)/(secq + 1)) + sqrt((secq + 1)/(secq - 1))` = 2 cosesq
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Find A if tan 2A = cot (A-24°).
Prove that:
`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.