Advertisements
Advertisements
प्रश्न
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
उत्तर
`tan ((B + C)/2) = cot "A/2`
We know that for a triangle ΔABC
`<A + <B + <C = 180^circ`
`<B + <C = 180^circ - <A`
`(<B + <C)/2 = 90^circ - (<A)/2`
`tan ((B + C)/2) = tan(90^circ - A/2)`
= `cot(A/2)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that `(sin θ tan θ)/(1 - cos θ) = 1 + sec θ.`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.