Advertisements
Advertisements
प्रश्न
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
उत्तर
Given: sinθ = `11/61`
We know that,
sin2θ + cos2θ = 1
∴ `(11/61)^2 + cos^2θ` = 1
∴ `121/3721 + cos^2θ` = 1
∴ cos2θ = `1 - 121/3721`
∴ cos2θ = `(3721 - 121)/3721`
∴ cos2θ = `3600/3721`
∴ cosθ = `60/61` .......[Taking square root of both sides]
APPEARS IN
संबंधित प्रश्न
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`
If `sec theta + tan theta = x," find the value of " sec theta`
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If tan α + cot α = 2, then tan20α + cot20α = ______.
If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.