हिंदी

If sinθ = 1161, then find the value of cosθ using the trigonometric identity. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.

योग

उत्तर

Given: sinθ = `11/61`

We know that,

sin2θ + cos2θ = 1

∴ `(11/61)^2 + cos^2θ` = 1

∴ `121/3721 + cos^2θ` = 1

∴ cos2θ = `1 - 121/3721`

∴ cos2θ = `(3721 - 121)/3721`

∴ cos2θ = `3600/3721`

∴ cosθ = `60/61`  .......[Taking square root of both sides]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2021-2022 (March) Set 1

APPEARS IN

संबंधित प्रश्न

Express the ratios cos A, tan A and sec A in terms of sin A.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`

 


Prove the following trigonometric identities

(1 + cot2 A) sin2 A = 1


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


`(cos theta  cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


If  `sin theta = 1/2 , " write the value of" ( 3 cot^2 theta + 3).`


If `sec theta + tan theta = x,"  find the value of " sec theta`


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If tan α + cot α = 2, then tan20α + cot20α = ______.


If sinA + sin2A = 1, then the value of the expression (cos2A + cos4A) is ______.


Prove the following:

(sin α + cos α)(tan α + cot α) = sec α + cosec α


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×