हिंदी

`((Sin A- Sin B ))/(( Cos a + Cos B ))+ (( Cos a - Cos B ))/(( Sina + Sin B ))=0` - Mathematics

Advertisements
Advertisements

प्रश्न

`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 

उत्तर

LHS =`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))` 

     =`((sinA - sin B )( sinA + sinB )+ ( cos A - cosB )( cosA - cosB))/((cos A+ cos B )( sin A+ sinB))`

    =` (sin^2 A - sin^2 B + cos^2 A - cos^2 B)/( (cos A + cos B )( sinA + sinB))`

   =` 0/((cos A + cos B )( sin A + sinB ))`

   =0 

   =RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 1

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 34

संबंधित प्रश्न

`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

`((1 + tan^2 theta)cot theta)/(cosec^2 theta)   = tan theta`


Prove the following trigonometric identities.

sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B


If sin θ + cos θ = x, prove that  `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`


If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`


If `sqrt(3) sin theta = cos theta  and theta ` is an acute angle, find the value of θ .


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]


\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to 


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then 


If sin θ − cos θ = 0 then the value of sin4θ + cos4θ


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Choose the correct alternative:

1 + tan2 θ = ?


If cosθ = `5/13`, then find sinθ. 


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`


Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2  = 1`


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×