Advertisements
Advertisements
प्रश्न
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
उत्तर
LHS =`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))`
=`((sinA - sin B )( sinA + sinB )+ ( cos A - cosB )( cosA - cosB))/((cos A+ cos B )( sin A+ sinB))`
=` (sin^2 A - sin^2 B + cos^2 A - cos^2 B)/( (cos A + cos B )( sinA + sinB))`
=` 0/((cos A + cos B )( sin A + sinB ))`
=0
=RHS
APPEARS IN
संबंधित प्रश्न
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
If sin θ + cos θ = x, prove that `sin^6 theta + cos^6 theta = (4- 3(x^2 - 1)^2)/4`
If `cot theta = 1/ sqrt(3) , "write the value of" ((1- cos^2 theta))/((2 -sin^2 theta))`
If `sqrt(3) sin theta = cos theta and theta ` is an acute angle, find the value of θ .
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If x = r sin θ cos ϕ, y = r sin θ sin ϕ and z = r cos θ, then
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Choose the correct alternative:
1 + tan2 θ = ?
If cosθ = `5/13`, then find sinθ.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ