Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
рдЙрддреНрддрд░
LHS = `(tan A + tanB )/(cot A + cot B) `
=`(tan A + tan B)/(1/ tan A + 1/ tanB)`
=` (tan A + tan B)/( (tan A+tan B)/ (tan A tan B)`
=`(tan A tan B ( tan A + tan B))/((tan A + tan B ))`
= ЁЭСбЁЭСОЁЭСЫЁЭР┤ ЁЭСбЁЭСОЁЭСЫЁЭР╡
= RHS
Hence, LHS = RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
If sinθ + cosθ = p and secθ + cosecθ = q, show that q(p2 – 1) = 2p
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(secA - tanA)/(secA + tanA) = 1 - 2secAtanA + 2tan^2A`
Prove that:
`(tanA + 1/cosA)^2 + (tanA - 1/cosA)^2 = 2((1 + sin^2A)/(1 - sin^2A))`
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`sin theta / ((1+costheta))+((1+costheta))/sin theta=2cosectheta`
Find the value of ` ( sin 50°)/(cos 40°)+ (cosec 40°)/(sec 50°) - 4 cos 50° cosec 40 °`
Prove that `(sinθ - cosθ + 1)/(sinθ + cosθ - 1) = 1/(secθ - tanθ)`
(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If 1 – cos2θ = `1/4`, then θ = ?
Prove that (1 – cos2A) . sec2B + tan2B(1 – sin2A) = sin2A + tan2B
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ