Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
उत्तर १
...
उत्तर २
LHS = `(1 + tan^2A) + (1 + 1/tan^2A)`
= `(1 + sin^2A/cos^2A) + (1 + 1/(sin^2A/cos^2A))`
= `((cos^2A + sin^2A)/(cos^2A)) + ((cos^2A + sin^2A)/(sin^2A))`
= `1/(1 - sin^2A) + 1/sin^2A` (∵ `cos^2A + sin^2A = 1`)
= `(sin^2A + 1 - sin^2A)/(sin^2A(1 - sin^2A)) = 1/(sin^2A - sin^4A)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
cos4 A − sin4 A is equal to ______.
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S