Advertisements
Advertisements
प्रश्न
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
उत्तर
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA))`
= `cot^2A((secA - 1)/(1 + sinA) xx (secA + 1)/(secA + 1)) + sec^2A((sinA - 1)/(1 + secA))`
= `cot^2A[(sec^2A - 1)/((1 + sinA)(secA + 1))] + sec^2A((sinA - 1)/(1 + secA))`
= `cot^2A[(tan^2A)/((1 + sinA)(secA + 1))] + sec^2A((sinA - 1)/(1 + secA))`
= `1/((1 + sinA)(secA + 1)) + sec^2A((sinA - 1)/(1 + secA))`
= `(1 + sec^2A(sinA - 1)(1 + sinA))/((1 + sinA)(secA + 1))`
= `(1 + sec^2A(sin^2A - 1))/((1 + sinA)(secA + 1))`
= `(1 + sec^2A(-cos^2A))/((1 + sinA)(secA + 1))`
= `(1 - 1)/((1 + sinA)(secA + 1))`
= 0
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`((cosecA - cotA)^2 + 1)/(secA(cosecA - cotA)) = 2cotA`
`cot^2 theta - 1/(sin^2 theta ) = -1`a
If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`
If (sin α + cosec α)2 + (cos α + sec α)2 = k + tan2α + cot2α, then the value of k is equal to
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
If cosec θ + cot θ = p, then prove that cos θ = `(p^2 - 1)/(p^2 + 1)`