рд╣рд┐рдВрджреА

If X=A `Cos^3 Theta and Y = B Sin ^3 Theta ," Prove that " (X/A)^(2/3) + ( Y/B)^(2/3) = 1.` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If x=a `cos^3 theta and y = b sin ^3 theta ," prove that " (x/a)^(2/3) + ( y/b)^(2/3) = 1.`

рдЙрддреНрддрд░

We have x = a `cos^3 theta `

 = > `x/a = cos^3 theta     ........(i)`

 Again , `y = b  sin^3 theta`

  =  > `y/b = sin^3 theta      .....(ii)`

 Now , LHS = `(x/a)^(2/3) + (y/b)^(2/3)`

 = `( cos^3 theta )^(2/3) + (sin^3 theta )^ (2/3 )`     [ from (i) and (ii)]

 =` cos^2 theta + sin^2 theta `

 =1

ЁЭР╗ЁЭСТЁЭСЫЁЭСРЁЭСТ, ЁЭР┐ЁЭР╗ЁЭСЖ = ЁЭСЕЁЭР╗ЁЭСЖ

        

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 2

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 2 | Q 6

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following identities:

`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`

`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`


If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2

 


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove the following identities:

sec2 A . cosec2 A = tan2 A + cot2 A + 2


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove that:

`sqrt(sec^2A + cosec^2A) = tanA + cotA`


If ` cot A= 4/3 and (A+ B) = 90°  `  ,what is the value of tan B?


Write the value of tan10° tan 20° tan 70° tan 80° .


If \[\sin \theta = \frac{1}{3}\] then find the value of 2cot2 θ + 2. 


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity : 

`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`


If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that   `x^2 + y^2 + z^2 = r^2`


If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1


Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.


Prove that sin (90° - θ) cos (90° - θ) = tan θ. cos2θ.


Prove the following identities.

`sqrt((1 + sin theta)/(1 - sin theta)) + sqrt((1 - sin theta)/(1 + sin theta))` = 2 sec θ


Prove the following identities.

sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1


If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.


Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×