Advertisements
Advertisements
प्रश्न
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
उत्तर
We have `(tan theta + sin theta ) = m and ( tan theta - sin theta )=n`
Now ,LHS = `(m^2-n^2)^2`
=`[(tan^2 theta + sin theta )^2 - "( tan theta - sin theta )^2]^2`
=`[(tan^2 theta + sin^2 theta + 2 tan theta sin theta )-( tan^2 theta + sin^2 theta -2 tan theta sin theta )]^2`
=`[(tan^2 theta +sin^2 theta + 2 tan theta sin theta - tan^2 theta - sin^2 theta+ 2 tan theta sin theta )]^2`
=`(4 tan theta sin theta )^2`
=`16 tan^2 theta sin^2 theta`
=`16 (sin ^2 theta )/(cos^2 theta ) sin^2 theta`
=`16 ((1- cos^2 theta) sin ^2 theta)/ cos^2 theta`
=` 16 [ tan^2 theta (1- cos^2 theta)]`
=`16 (tan^2 theta - tan^2 theta cos^2 theta)`
=`16 (tan^2 theta -(sin^2 theta)/(cos^2 theta) xx cos^2 theta )s`
=`16 ( tan^2 theta - sin^2 theta )`
=`16 (tan theta + sin theta ) ( tan theta - sin theta)`
=`16 mn [(tan theta + sin^theta )( tan theta - sin theta ) =mn]`
=`∴ (m^2 - n^2 )(m^2 - n^2 )^2 = 16 mn`
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
`((sin A- sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If tan θ × A = sin θ, then A = ?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1