हिंदी

If `( Tan Theta + Sin Theta ) = M and ( Tan Theta - Sin Theta ) = N " Prove that "(M^2-n^2)^2 = 16 Mn .` - Mathematics

Advertisements
Advertisements

प्रश्न

If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`

उत्तर

We have `(tan theta + sin theta ) = m and ( tan theta - sin theta )=n`

 Now ,LHS = `(m^2-n^2)^2`

                 =`[(tan^2 theta + sin theta )^2 - "( tan theta - sin theta )^2]^2`

                =`[(tan^2 theta + sin^2 theta + 2 tan  theta  sin theta )-( tan^2 theta + sin^2 theta -2 tan theta sin theta )]^2`

               =`[(tan^2 theta +sin^2 theta + 2 tan theta sin theta - tan^2 theta -  sin^2 theta+ 2 tan theta sin theta )]^2`

              =`(4 tan theta sin theta )^2`

              =`16 tan^2 theta sin^2 theta`

              =`16 (sin ^2 theta )/(cos^2 theta ) sin^2 theta`

              =`16 ((1- cos^2 theta) sin ^2 theta)/ cos^2 theta`

               =` 16 [ tan^2 theta (1- cos^2 theta)]`

               =`16 (tan^2 theta - tan^2 theta cos^2 theta)`

               =`16 (tan^2 theta -(sin^2 theta)/(cos^2 theta) xx cos^2 theta )s`

              =`16 ( tan^2 theta - sin^2 theta )`

              =`16 (tan theta + sin theta ) ( tan theta - sin theta)`

              =`16 mn                 [(tan theta + sin^theta )( tan theta - sin theta ) =mn]`

               =`∴ (m^2 - n^2 )(m^2 - n^2 )^2 = 16 mn`

           

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 2

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 2 | Q 7

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`


`((sin A-  sin B ))/(( cos A + cos B ))+ (( cos A - cos B ))/(( sinA + sin B ))=0` 


Write the value of `(sin^2 theta 1/(1+tan^2 theta))`. 


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity : 

`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`


Prove the following identity : 

`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m


Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.


Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.


If tan θ × A = sin θ, then A = ?


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×