Advertisements
Advertisements
प्रश्न
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
उत्तर
sec2θ = 1 + tan2θ ......[Fundamental trigonometric identity]
sec2θ – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = 1
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `1/sqrt(3)`
APPEARS IN
संबंधित प्रश्न
Evaluate without using trigonometric tables:
`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`
Prove the following trigonometric identities.
`1 + cot^2 theta/(1 + cosec theta) = cosec theta`
Prove the following trigonometric identities.
tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
If x = r sin A cos B, y = r sin A sin B and z = r cos A, then prove that : x2 + y2 + z2 = r2
`sin theta (1+ tan theta) + cos theta (1+ cot theta) = ( sectheta+ cosec theta)`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If cos A + cos2 A = 1, then sin2 A + sin4 A =
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
(1 – cos2 A) is equal to ______.