Advertisements
Advertisements
प्रश्न
(1 – cos2 A) is equal to ______.
विकल्प
sin2 A
tan2 A
1 – sin2 A
sec2 A
उत्तर
(1 – cos2 A) is equal to sin2 A.
Explanation:
We know that,
sin2 A + cos2 A = 1
`\implies` 1 – cos2 A = sin2 A
Therefore,
1 – cos2 A is equal to sin2 A
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following identities:
(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1
Prove that:
`"tanθ"/("secθ" – 1) = (tanθ + secθ + 1)/(tanθ + secθ - 1)`
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove that the following identities:
Sec A( 1 + sin A)( sec A - tan A) = 1.
Prove that:
`(cos^3 θ + sin^3 θ)/(cos θ + sin θ) + (cos^3 θ - sin^3 θ)/(cos θ - sin θ) = 2`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1
If cos (α + β) = 0, then sin (α – β) can be reduced to ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
sin(45° + θ) – cos(45° – θ) is equal to ______.
Prove that `(cot A - cos A)/(cot A + cos A) = (cos^2 A)/(1 + sin A)^2`