Advertisements
Advertisements
प्रश्न
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
उत्तर
LHS = `(sin B + sec A)/sin A`
= `(sin (90 - A) + sec A)/sin A`
= `(cos A + sec A)/sin A`
= `(cos^2 A + 1)/(sin A. cos A)`
= `(2cos^2 A + sin^2 A)/(sin A. cos A)`
= 2cot A + tan A
= 2 tan B + tan A = RHS
hence proved.
APPEARS IN
संबंधित प्रश्न
Prove that `(tan^2 theta)/(sec theta - 1)^2 = (1 + cos theta)/(1 - cos theta)`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Choose the correct alternative:
cos θ. sec θ = ?
Prove that cot2θ × sec2θ = cot2θ + 1
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If tan θ = `x/y`, then cos θ is equal to ______.