Advertisements
Advertisements
प्रश्न
Prove that:
`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`
उत्तर
L.H.S. = `tanA/(1 - cotA) + cotA/(1 - tanA)`
= `tanA/(1 - 1/tanA) + (1/tanA)/(1 - tanA)`
= `tan^2A/(tanA - 1) + 1/(tanA(1 - tanA))`
= `(tan^3A - 1)/(tanA(1 - tanA))`
= `((tanA - 1)(tan^2A + 1 + tanA))/(tanA(tanA - 1)`
= `(sec^2A + tanA)/tanA`
= `(1/cos^2A)/(sinA/cosA) + 1`
= `1/(sinAcosA) + 1`
= sec A cosec A + 1 = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`sqrt((1+sinA)/(1-sinA)) = secA + tanA`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Given that sin θ = `a/b`, then cos θ is equal to ______.