Advertisements
Advertisements
प्रश्न
If \[\cos A = \frac{7}{25}\] find the value of tan A + cot A.
उत्तर
Given: `cos A=7/25`
We know that,
`sin^2 A+cos^2 A=1`
⇒` sin^2 A+(7/25)^2=1`
⇒` sin^2 A+49/625=1`
⇒` sin^2 A1-49/625`
⇒ `sin^2A=576/625`
⇒ `sin A=24/25`
Therefore,
`tan A+cot A= sin A/cos A+cos A/sin A`
=` (24/25)/(7/25)+1=(7/25)/(24/25)`
= `24/7+7/24`
=`((24)^2+(7)^2)/168`
=`(576+49)/168`
=`625/168`
APPEARS IN
संबंधित प्रश्न
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
Prove the following identities:
(1 + cot A – cosec A)(1 + tan A + sec A) = 2
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
` tan^2 theta - 1/( cos^2 theta )=-1`
Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`.
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
Prove the following identity :
`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`