हिंदी

If cos A = 7 25 find the value of tan A + cot A. - Mathematics

Advertisements
Advertisements

प्रश्न

If \[\cos A = \frac{7}{25}\]  find the value of tan A + cot A. 

योग

उत्तर

Given:  `cos A=7/25` 

We know that, 

`sin^2 A+cos^2 A=1` 

⇒` sin^2 A+(7/25)^2=1` 

⇒` sin^2 A+49/625=1` 

⇒` sin^2 A1-49/625` 

⇒ `sin^2A=576/625` 

⇒ `sin A=24/25` 

Therefore, 

`tan A+cot A= sin A/cos A+cos A/sin A` 

=` (24/25)/(7/25)+1=(7/25)/(24/25)` 

= `24/7+7/24` 

=`((24)^2+(7)^2)/168`  

=`(576+49)/168` 

=`625/168`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 16 | पृष्ठ ५५

संबंधित प्रश्न

if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


Prove the following identities:

(1 + cot A – cosec A)(1 + tan A + sec A) = 2


Show that : tan 10° tan 15° tan 75° tan 80° = 1


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove that

`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`


` tan^2 theta - 1/( cos^2 theta )=-1`


Write the value of `sin theta cos ( 90° - theta )+ cos theta sin ( 90° - theta )`. 


If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`


Prove the following identity : 

`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`


Prove the following identity : 

`sqrt((1 + sinq)/(1 - sinq)) + sqrt((1- sinq)/(1 + sinq))` = 2secq


Prove the following identity : 

`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Prove that:

`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)` 


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Factorize: sin3θ + cos3θ

Hence, prove the following identity:

`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×