हिंदी

If `Cos Theta = 7/25 , "Write the Value Of" ( Tan Theta + Cot Theta).` - Mathematics

Advertisements
Advertisements

प्रश्न

If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`

उत्तर

`As sin^2 theta = 1 - cos^2 theta`

    =` 1- (7/25)^2`

    =`1-49/625`

    =`(625-49)/625`

   ⇒ `sin^2 theta = 576/625`

   ⇒` sintheta = sqrt(576/625)`

   ⇒`sin theta = 24/25`

Now , 

`tan theta + cot theta `

  =`sin theta / cos theta+ cos theta /sin theta`

  =`(sin^2 theta + cos^2 theta)/(cos theta sin theta)`

   =`1/((7/25xx24/25))`

   =`1/((168/625))`

   =`625/168`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Trigonometric Identities - Exercises 3

APPEARS IN

आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 3 | Q 18

संबंधित प्रश्न

9 sec2 A − 9 tan2 A = ______.


Prove that

`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove that:

`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`


Prove that:

(cosec A – sin A) (sec A – cos A) sec2 A = tan A


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


Show that none of the following is an identity:

`tan^2 theta + sin theta = cos^2 theta`


 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 


Prove the following identity : 

`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove the following trigonometry identity:

(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×