Advertisements
Advertisements
प्रश्न
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
उत्तर
`As sin^2 theta = 1 - cos^2 theta`
=` 1- (7/25)^2`
=`1-49/625`
=`(625-49)/625`
⇒ `sin^2 theta = 576/625`
⇒` sintheta = sqrt(576/625)`
⇒`sin theta = 24/25`
Now ,
`tan theta + cot theta `
=`sin theta / cos theta+ cos theta /sin theta`
=`(sin^2 theta + cos^2 theta)/(cos theta sin theta)`
=`1/((7/25xx24/25))`
=`1/((168/625))`
=`625/168`
APPEARS IN
संबंधित प्रश्न
9 sec2 A − 9 tan2 A = ______.
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove that:
`(sinA - cosA)(1 + tanA + cotA) = secA/(cosec^2A) - (cosecA)/(sec^2A)`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`(1 + cotA + tanA)(sinA - cosA) = secA/(cosec^2A) - (cosecA)/sec^2A`
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
`(sin A)/(1 + cos A) + (1 + cos A)/(sin A)` = 2 cosec A
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If tan θ – sin2θ = cos2θ, then show that sin2 θ = `1/2`.
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove the following trigonometry identity:
(sinθ + cosθ)(cosecθ – secθ) = cosecθ.secθ – 2 tanθ