Advertisements
Advertisements
प्रश्न
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
उत्तर
Taking L.H.S.
`(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A")`
`((sin^2"A")/(cos^2"A"))/((sin^2"A")/(cos^2"A")-1)+ ((1)/(sin^2"A"))/((1)/(cos^2"A")-(1)/(sin^2"A")) ...(∵ tan "A" = (sin"A")/(cos"A"))`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (1)/(sin^2 "A"). (sin^2"A" cos^2"A")/(sin^2"A"-cos^2"A")`
= `(sin^2"A")/(sin^2 "A"- cos^2"A") + (cos^2"A")/(sin^2 "A"- cos^2"A")`
= `(sin^2 "A"+ cos^2"A")/(sin^2"A"-cos^2"A")`
= `(1)/(1-cos^2"A"-cos^2"A") ...(∵ sin^2 "A" = 1 -cos^2"A")`
= `(1)/(1-2 cos^2 "A")`
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
9 sec2 A − 9 tan2 A = ______.
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Write the value of cosec2 (90° − θ) − tan2 θ.
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Factorize: sin3θ + cos3θ
Hence, prove the following identity:
`(sin^3θ + cos^3θ)/(sin θ + cos θ) + sin θ cos θ = 1`