Advertisements
Advertisements
प्रश्न
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
उत्तर
Here,
m2 - n2 = (tan A + sin A)2 - (tan A - sin A)2
m2 - n2 = ( tan A + sin A + tan A - sin A )( tan A + sin A - tan A + sin A)
m2 - n2 = (2 tan A)(2 sin A)
m2 - n2 = 4 tan A sin A ....(1)
Also,
`4 sqrt(mn) = 4sqrt((tan A + sin A)( tan A - sin A))`
= 4 `sqrt(tan^2 A - sin^2 A)`
= 4 `sqrt((sin^2 A)/(cos^2 A) - sin^2 A)`
= `4 sin A sqrt((1 - cos^2 A)/(cos^2 A))`
= `4 sin A sqrt((sin^2 A)/(cos^2 A))`
= `4 sin A sqrt((sin A)/(cos A))`
= 4 sin A. tan A ....(2)
Using equation (1) and equation (2) we get the required conditions.
Hence proved.
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`(1+ cos theta + sin theta)/( 1+ cos theta - sin theta )= (1+ sin theta )/(cos theta)`
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
If `sin theta = x , " write the value of cot "theta .`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1