Advertisements
Advertisements
प्रश्न
Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
उत्तर
L.H.S = `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")`
= `"cot A"/(1 - 1/(tan"A")) + "tan A"/(1 - tan "A")`
= `"cot A"/((tan "A" - 1)/(tan "A")) + "tan A"/(1 - tan "A")`
= `"cot A tan A"/(tan "A" - 1) + "tan A"/(1 - tan "A")`
= `1/(tan "A" - 1) + "tan A"/(1 - tan "A")` ......[∵ cot A tan A = 1]
= `- 1/(1 - tan "A") + "tan A"/(1 - tan "A")`
= `- (1/(1 -tan "A") - "tan A"/(1- tan "A"))`
= `-((1 - tan "A")/(1 - tan "A"))`
= – 1
= R.H.S
∴ `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
2 sin2 A + cos4 A = 1 + sin4 A
`(1 + cot^2 theta ) sin^2 theta =1`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`sqrt((1-cos theta)/(1+cos theta)) = (cosec theta - cot theta)`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
\[\frac{x^2 - 1}{2x}\] is equal to
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If sec θ = `25/7`, then find the value of tan θ.
If sin θ = `1/2`, then find the value of θ.
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
If 3 sin θ = 4 cos θ, then sec θ = ?
sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.
Activity:
L.H.S = `square`
= (sin2A + cos2A) `(square)`
= `1 (square)` .....`[sin^2"A" + square = 1]`
= `square` – cos2A .....[sin2A = 1 – cos2A]
= `square`
= R.H.S
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`