हिंदी

Prove that cot A1-cotA+tan A1-tanA = – 1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1

योग

उत्तर

L.H.S = `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")`

= `"cot A"/(1 - 1/(tan"A")) + "tan A"/(1 - tan "A")`

= `"cot A"/((tan "A" - 1)/(tan "A")) + "tan A"/(1 - tan "A")`

= `"cot A tan A"/(tan "A" - 1) + "tan A"/(1 - tan "A")`

= `1/(tan "A" - 1) + "tan A"/(1 - tan "A")`   ......[∵ cot A tan A = 1]

= `- 1/(1 - tan "A") + "tan A"/(1 - tan "A")`

= `- (1/(1 -tan "A") - "tan A"/(1- tan "A"))`

= `-((1 - tan "A")/(1 - tan "A"))`

= – 1

= R.H.S

∴ `"cot A"/(1 - cot"A") + "tan A"/(1 - tan "A")` = – 1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 6: Trigonometry - Q.3 (B)

संबंधित प्रश्न

Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove that:

2 sin2 A + cos4 A = 1 + sin4


`(1 + cot^2 theta ) sin^2 theta =1`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`sqrt((1-cos theta)/(1+cos theta)) = (cosec  theta - cot  theta)`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


\[\frac{x^2 - 1}{2x}\] is equal to 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following Identities :

`(cosecA)/(cotA+tanA)=cosA`


If sec θ = `25/7`, then find the value of tan θ.


If sin θ = `1/2`, then find the value of θ. 


Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ


If 3 sin θ = 4 cos θ, then sec θ = ?


sin4A – cos4A = 1 – 2cos2A. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

 = (sin2A + cos2A) `(square)`

= `1 (square)`       .....`[sin^2"A" + square = 1]`

= `square` – cos2A    .....[sin2A = 1 – cos2A]

= `square`

= R.H.S


Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×