हिंदी

If Sec θ + Tan θ = X, Write the Value of Sec θ − Tan θ in Terms of X. - Mathematics

Advertisements
Advertisements

प्रश्न

If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.

संक्षेप में उत्तर

उत्तर

Given:` secθ+tanθ=x` 

We know that, 

`Sec^2θ-tan^2θ=1` 

Therefore, 

`sec^2 θ-tan^2θ=1` 

⇒` (Secθ+tan θ) (Secθ-tan θ)=1` 

⇒` x (secθ-tan θ )=1` 

⇒ `(sec θ-tan θ)=1/x` 

Hence, `sec θ-tan θ=1/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 5 | पृष्ठ ५५

संबंधित प्रश्न

Prove the following trigonometric identities.

`sqrt((1 - cos theta)/(1 + cos theta)) = cosec theta - cot theta`


Prove the following trigonometric identities.

`(cos theta)/(cosec theta + 1) + (cos theta)/(cosec theta - 1) = 2 tan theta`


Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following trigonometric identities.

`tan A/(1 + tan^2  A)^2 + cot A/((1 + cot^2 A)) = sin A  cos A`


If cos θ + cot θ = m and cosec θ – cot θ = n, prove that mn = 1


If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A


If cosec θ − cot θ = α, write the value of cosec θ + cot α.


\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to


Prove the following identity :

`tan^2A - sin^2A = tan^2A.sin^2A`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


Without using trigonometric identity , show that :

`sin(50^circ + θ) - cos(40^circ - θ) = 0`


Without using trigonometric identity , show that :

`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.


Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


If cot θ + tan θ = x and sec θ – cos θ = y, then prove that `(x^2y)^(2/3) – (xy^2)^(2/3)` = 1


If cos (α + β) = 0, then sin (α – β) can be reduced to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×