Advertisements
Advertisements
प्रश्न
Without using trigonometric identity , show that :
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
उत्तर
`sec70^circ sin20^circ - cos20^circ cosec70^circ = 0`
Consider `sec70^circ sin20^circ - cos20^circ cosec70^circ`
⇒ `sec(90^circ - 20^circ)sin20^circ - cos20^circ . cosec(90^circ - 20^circ)`
⇒ `cosec20^circ sin20^circ - cos20^circ sec20^circ`
⇒ `1/sin20^circ . sin20^circ - cos20^circ . 1/cos20^circ`
⇒ 1 - 1 = 0
APPEARS IN
संबंधित प्रश्न
Prove that (cosec A – sin A)(sec A – cos A) sec2 A = tan A.
` tan^2 theta - 1/( cos^2 theta )=-1`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
If cosθ + sinθ = `sqrt2` cosθ, show that cosθ - sinθ = `sqrt2` sinθ.
If 2sin2β − cos2β = 2, then β is ______.
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
(1 – cos2 A) is equal to ______.