हिंदी

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.

विकल्प

  • 1

  • `3/4`

  • `1/2`

  • `1/4`

MCQ
रिक्त स्थान भरें

उत्तर १

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is `underlinebb(1/2)`.

Explanation:

Given,

sin θ – cos θ = 0

⇒ sin θ = cos θ

⇒ `sintheta/costheta` = 1

⇒ tan θ = 1   ...`[∵ tan theta = sintheta/costheta  "and"  tan 45^circ = 1]`

⇒ tan θ = tan 45°

∴ θ = 45°

Now, sin4θ + cos4θ = sin445° + cos445°

= `(1/sqrt(2))^4 + (1/sqrt(2))^4`    ...`[∵ sin 45^circ = cos 45^circ = 1/sqrt(2)]`

= `1/4 + 1/4`

= `2/4`

= `1/2`

shaalaa.com

उत्तर २

LHS =`sin theta / ((1+costheta))+((1+costheta))/sin theta`

       =`(sin^2 theta +(1 +cos theta)^2)/((1+cos theta)sin theta)`

       =`(sin ^2 theta +1+cos^2theta+2costheta)/((1+cos theta)sintheta)`

       =`(1+1+2 cos theta)/((1+cos theta )sin theta)`

      =`(2+2 cos theta)/((1+cos theta )sintheta)`

       =`(2(1 + cos theta))/((1+ cos theta)sin theta)`

        =`2/sin theta`

        =`2 cosec  theta` 

       = RHS
    Hence, L.H.S = R.H.S.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.1 [पृष्ठ ९१]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.1 | Q 13 | पृष्ठ ९१
आरएस अग्रवाल Mathematics [English] Class 10
अध्याय 8 Trigonometric Identities
Exercises 1 | Q 11

संबंधित प्रश्न

 Evaluate sin25° cos65° + cos25° sin65°


(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2


Prove the following trigonometric identities.

`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove the following identities:

`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`


Prove that:

`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove the following identity : 

`(cosecθ)/(tanθ + cotθ) = cosθ`


Find the value of `θ(0^circ < θ < 90^circ)` if : 

`tan35^circ cot(90^circ - θ) = 1`


A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.


Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.


Prove that `(sintheta + "cosec"  theta)/sin theta` = 2 + cot2θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×