Advertisements
Advertisements
प्रश्न
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.
विकल्प
1
`3/4`
`1/2`
`1/4`
उत्तर १
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is `underlinebb(1/2)`.
Explanation:
Given,
sin θ – cos θ = 0
⇒ sin θ = cos θ
⇒ `sintheta/costheta` = 1
⇒ tan θ = 1 ...`[∵ tan theta = sintheta/costheta "and" tan 45^circ = 1]`
⇒ tan θ = tan 45°
∴ θ = 45°
Now, sin4θ + cos4θ = sin445° + cos445°
= `(1/sqrt(2))^4 + (1/sqrt(2))^4` ...`[∵ sin 45^circ = cos 45^circ = 1/sqrt(2)]`
= `1/4 + 1/4`
= `2/4`
= `1/2`
उत्तर २
LHS =`sin theta / ((1+costheta))+((1+costheta))/sin theta`
=`(sin^2 theta +(1 +cos theta)^2)/((1+cos theta)sin theta)`
=`(sin ^2 theta +1+cos^2theta+2costheta)/((1+cos theta)sintheta)`
=`(1+1+2 cos theta)/((1+cos theta )sin theta)`
=`(2+2 cos theta)/((1+cos theta )sintheta)`
=`(2(1 + cos theta))/((1+ cos theta)sin theta)`
=`2/sin theta`
=`2 cosec theta`
= RHS
Hence, L.H.S = R.H.S.
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
(1 + tan θ + sec θ) (1 + cot θ − cosec θ) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove that (1 + cot θ – cosec θ)(1+ tan θ + sec θ) = 2
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Prove that:
`"tan A"/(1 + "tan"^2 "A")^2 + "Cot A"/(1 + "Cot"^2 "A")^2 = "sin A cos A"`.
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
A moving boat is observed from the top of a 150 m high cliff moving away from the cliff. The angle of depression of the boat changes from 60° to 45° in 2 minutes. Find the speed of the boat in m/min.
Prove that sin( 90° - θ ) sin θ cot θ = cos2θ.
Prove that `(sintheta + "cosec" theta)/sin theta` = 2 + cot2θ