Advertisements
Advertisements
प्रश्न
sin(45° + θ) – cos(45° – θ) is equal to ______.
विकल्प
2cosθ
0
2sinθ
1
उत्तर
sin(45° + θ) – cos(45° – θ) is equal to 0.
Explanation:
sin(45° + θ) – cos(45° – θ)
= cos[90° – (45° + θ)] – cos(45° – θ) ...[∵ cos(90° – θ) = sinθ]
= cos(45° – θ) – cos(45° – θ)
= 0
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`sin^2 theta + 1/((1+tan^2 theta))=1`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of cos1° cos 2°........cos180° .
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that: (1+cot A - cosecA)(1 + tan A+ secA) =2.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?