Advertisements
Advertisements
प्रश्न
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
उत्तर
=`(1+ cot^2 theta ) sin ^2 theta`
=` cosec ^2 theta xx 1/ ( cosec^2 theta)`
=1
APPEARS IN
संबंधित प्रश्न
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Show that : `sinAcosA - (sinAcos(90^circ - A)cosA)/sec(90^circ - A) - (cosAsin(90^circ - A)sinA)/(cosec(90^circ - A)) = 0`
Prove that
`cot^2A-cot^2B=(cos^2A-cos^2B)/(sin^2Asin^2B)=cosec^2A-cosec^2B`
`(cos theta cosec theta - sin theta sec theta )/(costheta + sin theta) = cosec theta - sec theta`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
If `sin theta = x , " write the value of cot "theta .`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
If \[\sin \theta = \frac{4}{5}\] what is the value of cotθ + cosecθ?
Prove the following identity :
`(cos^3θ + sin^3θ)/(cosθ + sinθ) + (cos^3θ - sin^3θ)/(cosθ - sinθ) = 2`
Prove the following identity :
`[1/((sec^2θ - cos^2θ)) + 1/((cosec^2θ - sin^2θ))](sin^2θcos^2θ) = (1 - sin^2θcos^2θ)/(2 + sin^2θcos^2θ)`
If sec θ = x + `1/(4"x"), x ≠ 0,` find (sec θ + tan θ)
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that:
`(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(2 sin^2 A - 1)`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
Choose the correct alternative:
cot θ . tan θ = ?
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ