Advertisements
Advertisements
प्रश्न
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to
विकल्प
25
`1/25`
5
1
उत्तर
`1/25`
Explanation;
Hint:
5x = sec θ
x = `(sec theta/5)`
∴ x2 = `(sec^2 theta)/25`
`5/x` = tan θ
`1/x = tan theta/5`
`1/x^2 = (tan^2 theta)/25`
`x^2 - 1/x^2 = (sec^2 theta)/25 - (tan^2 theta)/25`
= `(sec^2 theta - tan^2 theta)/25`
= `1/25`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove that:
(cosec A – sin A) (sec A – cos A) sec2 A = tan A
Show that none of the following is an identity:
`sin^2 theta + sin theta =2`
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
If sin θ = `1/2`, then find the value of θ.
Prove that cosec2 (90° - θ) + cot2 (90° - θ) = 1 + 2 tan2 θ.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
`sqrt((1 - cos^2theta) sec^2 theta) = tan theta`