हिंदी

If Sin θ = 1 2 , Then Find the Value of θ. - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

If sin θ = `1/2`, then find the value of θ. 

योग

उत्तर

sin θ = `1/2`

`sin 30^circ = 1/2`  ................ [using trignometric table]

∴ θ = 30°

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (July) Set 1

APPEARS IN

संबंधित प्रश्न

Prove the following identities:

`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`

`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`

`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`


Evaluate without using trigonometric tables:

`cos^2 26^@ + cos 64^@ sin 26^@ + (tan 36^@)/(cot 54^@)`


Prove the following trigonometric identities.

(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


`tan theta/(1+ tan^2 theta)^2 + cottheta/(1+ cot^2 theta)^2 = sin theta cos theta`


`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


If `cosec  theta = 2x and cot theta = 2/x ," find the value of"  2 ( x^2 - 1/ (x^2))`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

secA(1 + sinA)(secA - tanA) = 1


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Evaluate:
`(tan 65°)/(cot 25°)`


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If tan θ × A = sin θ, then A = ?


Prove that sec2θ − cos2θ = tan2θ + sin2θ


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×