Advertisements
Advertisements
प्रश्न
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
उत्तर
L.H.S. = (1 + tan A . tan B)2 + (tan A – tan B)2
= 1 + tan2 A . tan2 B + 2 tan A . tan B + tan2 A + tan2 B – 2 tan A tan B
= 1 + tan2 A + tan2 B + tan2 A tan2 B
= sec2 A + tan2 B(1 + tan2 A)
= sec2 A + tan2 B sec2 A
= sec2 A(1 + tan2 B)
= sec2 A sec2 B = R.H.S.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
`sin theta/((cot theta + cosec theta)) - sin theta /( (cot theta - cosec theta)) =2`
Write the value of cos1° cos 2°........cos180° .
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If tan α + cot α = 2, then tan20α + cot20α = ______.
sin(45° + θ) – cos(45° – θ) is equal to ______.