Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
उत्तर
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
LHS = `sqrt((1 + sin A)/(1 - sin A)`
Rationalize the numerator abd denominator with `sqrt(1 + sin A)`
LHS = `sqrt(((1 + sin A)(1 + sin A))/((1 - sin A)(1 + sin A)))`
= `sqrt((1 + sin A)^2/(1 - sin^2 A))`
= `sqrt((1 + sin A)^2/(cos^2 A))`
= `(1 + sin A)/(cos A)`
= `1/(cos A) + (sin A)/(cos A)`
= sec A + tan A
= RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
` tan^2 theta - 1/( cos^2 theta )=-1`
What is the value of (1 + cot2 θ) sin2 θ?
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
Prove that tan2Φ + cot2Φ + 2 = sec2Φ.cosec2Φ.
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that `(sin θ. cos (90° - θ) cos θ)/sin( 90° - θ) + (cos θ sin (90° - θ) sin θ)/(cos(90° - θ)) = 1`.
Without using the trigonometric table, prove that
tan 10° tan 15° tan 75° tan 80° = 1
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`
sin(45° + θ) – cos(45° – θ) is equal to ______.
tan θ × `sqrt(1 - sin^2 θ)` is equal to:
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ