Advertisements
Advertisements
प्रश्न
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
उत्तर
LHS = `1/((cosA + sinA) - 1) + 1/((cosA + sinA) + 1)`
= `(cosA + sinA + 1 + cosA + sinA - 1)/((cosA + sinA)^2 -1)`
= `(2(cosA + sinA))/(cos^2A + sin^2A + 2cosAsinA - 1)`
= `(2(cosA + sinA))/(1 + 2cosAsinA - 1) = (cosA + sinA)/(cosAsinA)`
= `cosA/(cosAsinA) + sinA/(cosAsinA)`
= `1/sinA + 1/cosA`
= cosecA + secA
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Choose the correct alternative:
cot θ . tan θ = ?
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
sec θ when expressed in term of cot θ, is equal to ______.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?