Advertisements
Advertisements
प्रश्न
Prove the following identity :
`1/(cosA + sinA - 1) + 2/(cosA + sinA + 1) = cosecA + secA`
उत्तर
LHS = `1/((cosA + sinA) - 1) + 1/((cosA + sinA) + 1)`
= `(cosA + sinA + 1 + cosA + sinA - 1)/((cosA + sinA)^2 -1)`
= `(2(cosA + sinA))/(cos^2A + sin^2A + 2cosAsinA - 1)`
= `(2(cosA + sinA))/(1 + 2cosAsinA - 1) = (cosA + sinA)/(cosAsinA)`
= `cosA/(cosAsinA) + sinA/(cosAsinA)`
= `1/sinA + 1/cosA`
= cosecA + secA
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
` tan^2 theta - 1/( cos^2 theta )=-1`
`sqrt((1+cos theta)/(1-cos theta)) + sqrt((1-cos theta )/(1+ cos theta )) = 2 cosec theta`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Prove the following identities.
sec4 θ (1 – sin4 θ) – 2 tan2 θ = 1