Advertisements
Advertisements
प्रश्न
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
उत्तर
`sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta))`
`= sqrt((1 + cos theta)/(1 - cos theta) xx (1 + cos theta)/(1 + cos theta)) + sqrt((1 -cos theta)/(1 + cos theta) xx (1 - cos theta)/(1 - cos theta))`
`= sqrt((1 + cos theta)^2/(1 - cos^2 theta)) + sqrt((1 - cos theta)^2/(1 - cos^2 theta))`
`= sqrt((1 + cos theta)^2/(sin^2 theta)) + sqrt((1 -cos theta)^2/sin^2 theta)`
`= (1 + cos theta)/sin theta + (1 - cos theta)/sin theta`
`= 2/sin theta = 2cosec theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
`sinA/(1 - cosA) - cotA = cosecA`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
What is the value of (1 + tan2 θ) (1 − sin θ) (1 + sin θ)?
If sec θ + tan θ = x, then sec θ =
sec4 A − sec2 A is equal to
Prove the following identity :
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
If 5x = sec θ and `5/x` = tan θ, then `x^2 - 1/x^2` is equal to