Advertisements
Advertisements
प्रश्न
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
उत्तर
We know that `sec^2 theta - tan^2 theta = 1`
So,
`tan theta + 1/tan theta = (tan^2 theta + 1)/tan theta`
`= sec^2 theta/tan theta`
`= sec theta sec theta/tan theta`
`= sec theta = (1/cos theta)/(sin theta/cos theta)`
`= sec theta cosec theta`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
`(cos ec^theta + cot theta )/( cos ec theta - cot theta ) = (cosec theta + cot theta )^2 = 1+2 cot^2 theta + 2cosec theta cot theta`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
sec4 A − sec2 A is equal to
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
If x = r sinA cosB , y = r sinA sinB and z = r cosA , prove that `x^2 + y^2 + z^2 = r^2`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
If tan θ = 2, where θ is an acute angle, find the value of cos θ.
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If tan θ × A = sin θ, then A = ?
Prove that `(sintheta + tantheta)/cos theta` = tan θ(1 + sec θ)
If cos A + cos2A = 1, then sin2A + sin4 A = ?
If 2sin2β − cos2β = 2, then β is ______.
(1 + sin A)(1 – sin A) is equal to ______.