Advertisements
Advertisements
प्रश्न
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
उत्तर
We have ,
`cot A = 4/3`
⇒ ` cot (90° - B ) = 4/3 (As , A+ B = 90° )`
∴ tanB = `4/3`
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) (sinθ + cosecθ)^2 + (cosθ + secθ)^2 = 7 + tan^2 θ + cot^2 θ`
`(ii) (sinθ + secθ)^2 + (cosθ + cosecθ)^2 = (1 + secθ cosecθ)^2`
`(iii) sec^4 θ– sec^2 θ = tan^4 θ + tan^2 θ`
(secA + tanA) (1 − sinA) = ______.
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`(1 - tan^2 A)/(cot^2 A -1) = tan^2 A`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
Show that none of the following is an identity:
`tan^2 theta + sin theta = cos^2 theta`
If `cos theta = 2/3 , " write the value of" (4+4 tan^2 theta).`
What is the value of 9cot2 θ − 9cosec2 θ?
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
If cos \[9\theta\] = sin \[\theta\] and \[9\theta\] < 900 , then the value of tan \[6 \theta\] is
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`
Without using trigonometric identity , show that :
`sin(50^circ + θ) - cos(40^circ - θ) = 0`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2
(tan θ + 2)(2 tan θ + 1) = 5 tan θ + sec2θ.